Model Selection Emphasises the Importance of Non-Chromosomal Information in Genetic Studies
نویسندگان
چکیده
Ever since the case of the missing heritability was highlighted some years ago, scientists have been investigating various possible explanations for the issue. However, none of these explanations include non-chromosomal genetic information. Here we describe explicitly how chromosomal and non-chromosomal modifiers collectively influence the heritability of a trait, in this case, the growth rate of yeast. Our results show that the non-chromosomal contribution can be large, adding another dimension to the estimation of heritability. We also discovered, combining the strength of LASSO with model selection, that the interaction of chromosomal and non-chromosomal information is essential in describing phenotypes.
منابع مشابه
A stochastic model for project selection and scheduling problem
Resource limitation in zero time may cause to some profitable projects not to be selected in project selection problem, thus simultaneous project portfolio selection and scheduling problem has received significant attention. In this study, budget, investment costs and earnings are considered to be stochastic. The objectives are maximizing net present values of selected projects and minimizing v...
متن کاملTHE IMPORTANCE OF KARYOTYPE TEST IN DIAGNOSING GENETIC DISEASES: A CROSS-SECTIONAL STUDY
Background & Aims: The study of karyotype in several cases is the first step in the diagnosis of genetic disorders. The purpose of this study was to investigate the karyotype of a number of individuals with a range of possible genetic disorders. Materials & Methods: This researchis a descriptive cross-sectional study. Sampling was done after obtaining necessary permissions and written consent ...
متن کاملApplication of Genetic Algorithms for Pixel Selection in MIA-QSAR Studies on Anti-HIV HEPT Analogues for New Design Derivatives
Quantitative structure-activity relationship (QSAR) analysis has been carried out with a series of 107 anti-HIV HEPT compounds with antiviral activity, which was performed by chemometrics methods. Bi-dimensional images were used to calculate some pixels and multivariate image analysis was applied to QSAR modelling of the anti-HIV potential of HEPT analogues by means of multivariate calibration,...
متن کاملInvestigating Financial Crisis Prediction Power using Neural Network and Non-Linear Genetic Algorithm
Bankruptcy is an event with strong impacts on management, shareholders, employees, creditors, customers and other stakeholders, so as bankruptcy challenges the country both socially and economically. Therefore, correct prediction of bankruptcy is of high importance in the financial world. This research intends to investigate financial crisis prediction power using models based on Neural Network...
متن کاملApplication of Genetic Algorithms for Pixel Selection in MIA-QSAR Studies on Anti-HIV HEPT Analogues for New Design Derivatives
Quantitative structure-activity relationship (QSAR) analysis has been carried out with a series of 107 anti-HIV HEPT compounds with antiviral activity, which was performed by chemometrics methods. Bi-dimensional images were used to calculate some pixels and multivariate image analysis was applied to QSAR modelling of the anti-HIV potential of HEPT analogues by means of multivariate calibration,...
متن کامل